

PROCEDURE

1. Condition Assessment
2. Expected Value Structural Analysis
3. Uncertainty Structural Analysis
4. Required Design Capacity

- I.D. of Building's
- Structural system performance limit states
- Structural member section limit states
- For Each Limit State
- Expected Value of Capacity
- Expected Value of Demand
- Uncertainty in Capacity and Demand

Los Angeles Tall Buildings Structural Design Council

9

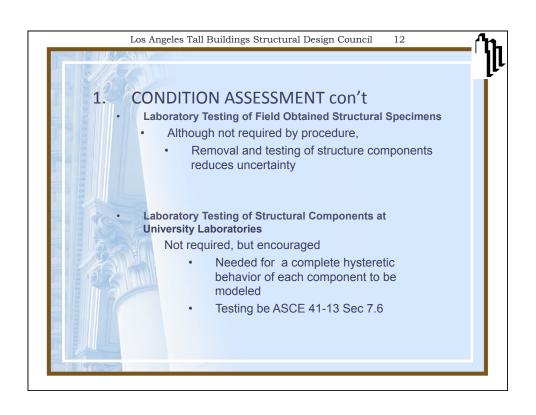
1. CONDITION ASSESSMENT

- Utilizes
 - ASCE 41-13, Sec 10.2 (Material Properties and Condition Assessment)
 - ACI 369R-11 (Guidelines for Seismic Rehabilitation of Existing Concrete Frame Buildings and Commentary
 - ACI 364.1R(Guide for Evaluation of Concrete Structures before Rehabilitation)
 - ACI 437R (Strength Evaluation of Existing Concrete Buildings)

Condition Assessment Plan Required, to Include:

- Material properties
- Component properties
- Structural member testing
 - Field nondestructive and destructive testing
 - Laboratory Structural Member Testing
 - Rating Quality of Plan- Superior, Good or Fair
 - Approval of Peer Review Panel

Los Angeles Tall Buildings Structural Design Council 1


CONDITION ASSESSMENT con't

- Plans, Specs and Info of Constructed Bldg
 - Mech properties of Matl's from drawings/specs per ASCE 41-13, Sec 10.2
 - No Default material properties to be used
 - Building Comprehensive condition assessment per more restrictive requirements of ASCE 41-13 and ACI 369R-11, Sec 2.3
 - Engineer to rate quality of Information:
 - Superior, Good, or Fair

Field Non-Destructive Testing

- Estimating size, location, cover, corrosion, location of voids and cracks, relative concrete compression strength, concrete delamination, possible non –visible degradation
- Not substituted for sample testing
- Engineer to rate quality of Information:
 - Superior, Good, or Fair

Los Angeles Tall Buildings Structural Design Council 1. **CONDITION ASSESSMENT con't Field Destructive Testing** per ASCE 41-13 and ACI 369R-11, Sec 2.2.3 Concrete cores from each unique structural component, min 3 steel and conc. Compressive strength, concrete stress strain curve- tension and compression strain 5 times strain at compressive strength. Reinforcing bar tension/compression strength, stress strain curve-tension and compression to strain 5 times strain at tension strength Material test of all structural member or connection types Engineer to rate quality of Information: Superior, Good, or Fair

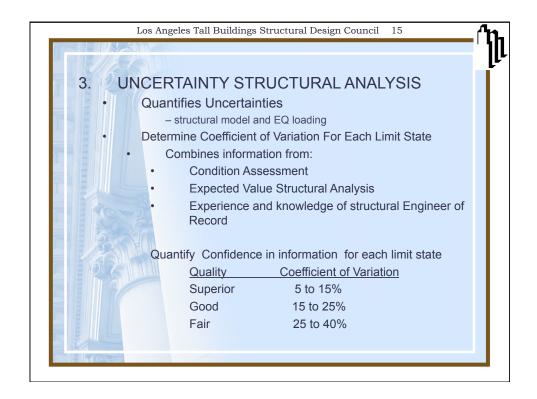
Los Angeles Tall Buildings Structural Design Council

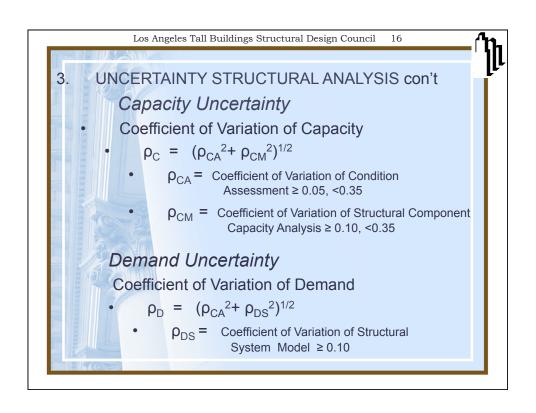
1. CONDITION ASSESSMENT con't

Laboratory Testing of Structural Components at University Laboratories

Where inelastic force-deformation behavior, stress strain relationship not available

- Data to be obtained from experiments consisting of physical test representative subassemblies.
- Min 3 separate test of each unique sub assembly
- Loading protocol consistent w/ strong impulsive ground motions due to proximity to fault rupture
- RE: FEMA 440A, FEMA695, PEER/ATC72-1
 - Engineer to rate quality of Information:
 - Superior, Good, or Fair
- Test results used to establish Expected Value and Coefficient of Variation of all variables in structural modeling and capacity equations


Los Angeles Tall Buildings Structural Design Council



EXPECTED VALUE STRUCTURAL ANALYSIS

- Linear Expected Value Structural Analysis Model (3D) for demand on serviceability limit states
 - Using Response Spectra
- Nonlinear Expected Value Structural Analysis Model (3D)– for demand on Ultimate (Strength) limit states
 - Subjected to min 7 Time-history ground motions
- Incorporates Expected Value estimates of stiffness and strength for anticipated level of EQ excitation and damage
- Includes results from Condition Assessment
- Laboratory component tests results appropriate for type of building components
- Structural engineer's best estimate of Expected Value of the Demand and Expected Value of the Capacity
 - Structural System Limit States
 - Structural Member Limit States

Los Angeles Tall Buildings Structural Design Council

17

4. REQUIRED DESIGN CAPACITY

Determine For Each:

- · Serviceability Limit States,
- Ultimate Limit States

Prescribed Load Capacity Reduction Factor, fp.

$$D_{PL} = f_{PL} \bar{C}$$

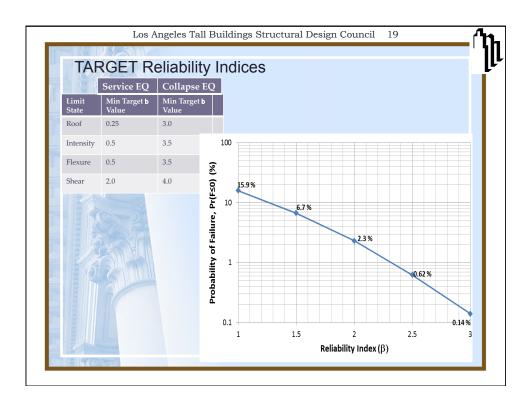
(Prescribed Limit State demand < Limit State Capacity)

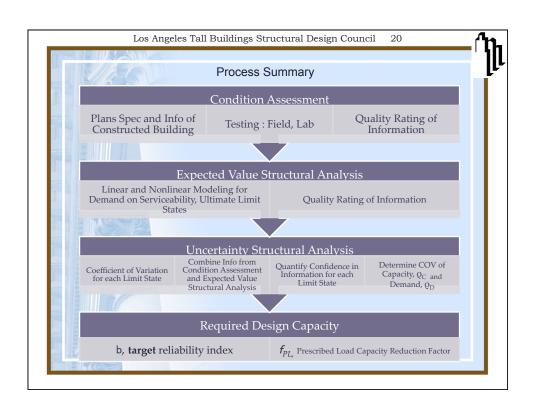
b = target reliability index (Set based on EQ level and Limit State)

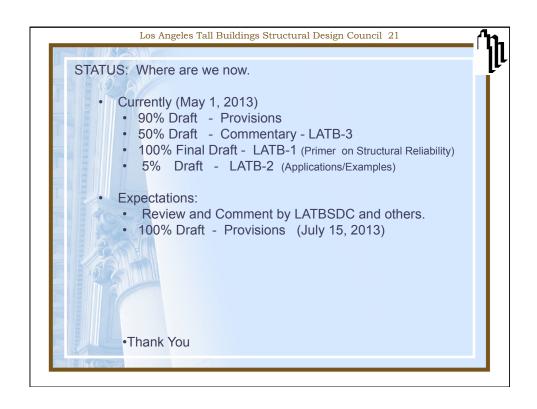
(.25-2.0 @service level, 3.0-4.0 @Collapse level)

 $a = D_{PL} / \overline{D}$ (aservice= 1, amce= 1.5)

w/ normal random variables


$$f_{PL} = a (1-0.75br_C)/(1+0.75br_D)$$


(w/ log-normal random variables


$$f_{PL} = a[\exp(-0.75b(r_C + r_D))]$$

	f_{Pl} .							
Inc	rease in the	capa	city re	ductio	n fact	or cai	n be a	chieved by
THE	•Increasing th	ne Capa	acity of	the limit	state b	y Stren	gthenin	g
	•Reducing the	e dema	nd on th	ne limit	state			
	•Reducing the	e uncer	tainties	ie coef	ficients	of varia	ation	
	(c) Capacity Reduction Factors (φ) for β = 3 and α = 1.5							
	Coefficient of Variation of Demand (%)	Coefficient of Variation of Capacity (%)						
		10	15	20	25	30	35	
	10	0.96	0.85	0.76	0.68	0.61	0.54	
	15	0.85	0.76	0.68	0.61	0.54	0.49	
	20	0.76	0.68	0.61	0.54	0.49	0.44	
	25	0.68	0.61	0.54	0.49	0.44	0.39	
	30	0.61	0.54	0.49	0.44	0.39	0.35	
	35	0.54	0.49	0.44	0.39	0.35	0.31	
	40	0.49	0.44	0.39	0.35	0.31	0.28	

Los Angeles Tall Buildings Structural Design Council

