Nonlinear Response-History Analysis for the Design of New Buildings: A Proposed Updated to ASCE7 Chapter 16

Curt B. Haselton, PhD, PE
Chair, Civil Engineering @ CSU, Chico

May 3rd, 2013; Los Angeles, CA

Reminder of the ASCE7 Process

Proposed Substantial Change to ASCE 7

Building Seismic Safety Council (2014 NEHRP Provisions)

ASCE7 Committee (for ASCE 7-16)

Final Substantial Change to ASCE 7
Issue Team Charge and Deliverables

- **Issue Team Objective:** Develop recommendations to the BSSC Committee regarding proposed improvements to Chapter 16 of ASCE7.

- **Issue Team Deliverables:**
 - Chapter 16 Code language (completely revised)
 - Chapter 16 Commentary language (completely revised)
 - Earthquake Spectra sister papers – (1) Development and (2) Example Applications

The Issue Team Membership

- **Industry**
 - CB Crouse, URS Corp.
 - Chung-Soo Doo, SOM
 - Andy Fry, MKA
 - Mahmoud Hachem, Degenkolb
 - Ron Hamburger, SGH
 - John Hooper, MKA
 - Afshar Jalalian, R&C
 - Charles Kircher, Kircher & Assoc.
 - Silvia Mazzoni, Degenkolb
 - Bob Pekelich, Degenkolb
 - Mark Sinclair, Degenkolb
 - Rafael Sabelli, Walter P Moore
 - Reid Zimmerman, R&C

- **Academic**
 - Curt Haselton, CSUC, Team Chair
 - Jack Baker, Stanford University
 - Finley Charney, Virginia Tech
 - Greg Deierlein, Stanford Univ.
 - Ken Elwood, Univ. of British Col.
 - Steve Mahin, UC Berkeley
 - Graham Powell, UC Berkeley Em.
 - Jon Stewart, UCLA
 - Andrew Whittaker, SUNY Buffalo
 - Robert Hanson, FEMA

- **Government**
 - Jay Harris, NIST
 - Nico Luco, USGS
 - Mike Tong, FEMA
Project Timeline and Current Status

- **2009/2010:** Issue Team topic selection.
- **October 2010:** Started the Issue Team
- **Past 2.5 years:** Worked, presented to BSSC Provisions Update Committee quarterly.
- **Current Status:** Proposal is complete and is in the BSSC committee voting process.
- **Late 2013:** Expect BSSC process to be complete.
- **2014:** Proposal goes to ASCE7.
- **ASCE7-16:** Expected new ASCE7 Chapter 16.

Literature Review

- We now have a lot to draw on (which was not the case only a few years ago)…

- *Guidelines for Performance-Based Seismic Design of Tall Buildings,* PEER Center, Tall Building Initiative (PEER, 2010).
Building Safety Goals

- Basic goals are from ASCE 7-10 Table C.1.3.1b:

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Tolerable Probability of Collapse</th>
<th>Ground Motion Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>I or II</td>
<td>10%</td>
<td>MCE_R</td>
</tr>
<tr>
<td>III</td>
<td>6%</td>
<td>MCE_R</td>
</tr>
<tr>
<td>IV</td>
<td>3%</td>
<td>MCE_R</td>
</tr>
</tbody>
</table>

Chapter 16 Proposal: Overall Structure

- Section 16.1: General Requirements
- Section 16.2: Ground Motions
- Section 16.3: Modeling and Analysis
- Section 16.4: Analysis Results and Accept. Criteria
- Section 16.5: Design Review
Proposal: Section 16.1 (General)

- The basic structure of the design approach is:
 - Linear DBE-level analysis (to enforce minimum base shear, enforce basic load combinations, etc.).
 - Nonlinear MCE-level response-history analysis.

Proposal: Section 16.2 (Ground Motion)

- Ground motion level: MCE\textsubscript{R}
- Number of ground motions: 11 motions
- Selection of motions:
 - Same general language.
 - Added: "It is also desirable for ground motion spectral shapes to be comparable to the target response spectrum of Section 16.2.2."
- Scaling of motions: Scale the maximum direction Sa to the target spectrum (which is max. direction).
- Period range: 0.2T\textsubscript{1} to 2.0T\textsubscript{1}, but also 90% mass.
- Spectral matching: Each comp. must meet target.
Proposal: Section 16.2 (Ground Motion)

- Target spectrum:
 - Method 1: Typical MCE_R spectrum.
 - Method 2: Multiple "scenario" spectra (typically two scenarios).
Proposal: Section 16.2 (Ground Motion)

Scenario: M=7, R=10 km
(characteristic event for many CA sites)

MCE_R target for $S_a(T_1 = 1.0s)$
(at the high-end for an MCE motion at CA sites)

Figure reference: J.W. Baker – 2006 COSMOS

Proposal: Section 16.2 (Ground Motion)

40 real records with M ≈ 7 and R ≈ 10 km

Figure reference: J.W. Baker – 2006 COSMOS
Proposal: Section 16.2 (Ground Motion)

40 real records with $M \approx 7$ and $R \approx 10$ km

Observations:
- Unique “peaked” spectral shape (Sa is not large at all periods).
- These records will tend to be less damaging as the structural period elongates past 1.0s.

Figure reference: J.W. Baker – 2006 COSMOS
Proposal: Sec. 16.3 (Modeling & Analysis)

- This section says what to do but not how to do it.
- This was intentionally not written to be a nonlinear analysis guideline.

Proposal: Section 16.4 (Accept. Criteria)

- Treatment of “collapses” and other “unacceptable responses”:
 - **Current Treatment in ASCE7-10**: Nothing but silence….
 - **Philosophical Camp #1**:
 - Outliers are statistically meaningless.
 - Acceptance criteria should be based only on mean/median.
 - If we have 5/11 (or 3/7) “collapses”, this means nothing.
 - **Philosophical Camp #2**:
 - Outliers are statistically meaningless, but are still a concern.
 - Acceptance criteria should also consider “collapses”.
 - If we have 5/11 (or 3/7) “collapses”, this is a great concern.
Proposal: Section 16.4 (Accept. Criteria)

- Results of a statistical collapse study:

| Number of Collapses | Likelihood for Various $P[C|\text{MCE}_R]$ Values |
|---------------------|---------------------------------|
| 0 of 11 | 93% 74% 51% 30% 7% |
| 1 of 11 | 7% 23% 36% 38% 21% |
| 2 of 11 | 0% 3% 11% 22% 29% |
| 3 of 11 | 0% 0% 2% 8% 24% |
| 4 of 11 | 0% 0% 0% 2% 13% |
| 5 of 11 | 0% 0% 0% 0% 5% |

- Conclusions of collapse study:
 - Even with 0/11 collapses, this in no way proves that the $P[C|\text{MCE}_R] \leq 10\%$. There is way too much uncertainty. We must rely on the other mean-based acceptance criteria.
 - Even if $P[C|\text{MCE}_R] = 10\%$, there is still a 26% chance of getting 1+ collapses (i.e. “false positive”). Therefore, an acceptance criterion of “no collapses allowed” would not be appropriate.
 - If $P[C|\text{MCE}_R] = 10\%$, it is highly unlikely (only a 3% chance) that we will see 2+ collapses. Therefore, an acceptance criterion that prohibits two collapses would be reasonable.
 - **Proposed Criterion:** Allow up to 1/11 “collapses” but not 2/11.
Proposal: Section 16.4 (Accept. Criteria)

- Component-level acceptance criteria are separated by:
 - Force-controlled (brittle) components
 - Deformation-controlled (ductile) components

Proposal: Section 16.4 (Accept. Criteria)

- Force-controlled (like Wallace, but no overstrength)

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Tolerable Probability of Collapse</th>
<th>Ground Motion Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>I or II</td>
<td>10%</td>
<td>MCE_R</td>
</tr>
<tr>
<td>III</td>
<td>6%</td>
<td>MCE_R</td>
</tr>
<tr>
<td>IV</td>
<td>3%</td>
<td>MCE_R</td>
</tr>
</tbody>
</table>
Proposal: Section 16.4 (Accept. Criteria)

- Force-controlled (brittle) components:

 - Case 1 (critical): “If the failure of the component would likely to lead to a progressive global collapse of the building, ….”
 - Case 2: “If the failure of the component would lead to only a local collapse, ….”
 - Case 3 (non-critical): “If the failure of the component would not lead to any structural instability, ….”

 Requirements (with exception for capacity-controlled):

 2.0 \(\frac{I_e F L \text{Mean Demand}}{F L \text{Mean Strength}} \leq 1 \) \[\varphi = 1.0 \]

 1.5 \(\frac{I_e F L \text{Mean Demand}}{F L \text{Mean Strength}} \)

 1.0 \(\frac{I_e F L \text{Mean Demand}}{F L \text{Mean Strength}} \)
Proposal: Section 16.4 (Accept. Criteria)

- Deformation-controlled (ductile) components:
 - Similar “cases” as force-controlled components.
 - Acceptance criteria are based on mean component deformation capacity.
 - “Pre-approved” uses of ASCE41 are also provided.

Proposal: Section 16.4 (Accept. Criteria)

- Drift limits:
 - Mean drift \leq twice the normal limit
 - The factor of two comes from:
 - 1.5 = MCE / DBE
 - 1.25 = Approx. ratio of R / Cd
 - 1.1 = A little extra because we trust NL RHA more
Proposal: Section 16.5 (Design Review)

- Typical requirements and language…
- Design review is critical!
Next Steps for this Project

- BSSC: Finish the committee/vetting process with the Building Seismic Safety Council (for the NEHRP Provisions). The next meeting is on June 4-5th.
- ASCE7: Further refine proposal through the ASCE7 process, with the goal to have a fully revised Chapter 16 in ASCE7-16.

Questions/Comments?

- Thanks you for your time!
- Questions, comments, suggestions?
- Contact:
 - E-mail: chaselton@csuchico.edu
 - Phone: (530) 898-5457